Minimax Kernels for Nonparametric Estimation
نویسنده
چکیده
SUMMARY The minimax kernels for nonparametric function and its derivative estimates are investigated. Our motivation comes from a study of minimax properties of nonparametric kernel estimates of probability densities and their derivatives. The asymptotic expression of the linear maximum risk is established. The corresponding minimax risk depends on the solutions to a kernel variational problem, called minimax kernels. Further study establishes the general form of minimax kernels with their coeecients determined by a system of nonlinear equations. The detailed properties of these minimax kernels are then discussed. Their explicit expressions are obtained by an algorithm developed in the Appendix. Moreover, the relative eeciencies among the minimax kernels, optimal kernels and Gaussian-based kernels are tabulated.
منابع مشابه
Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels
Maximum Mean Discrepancy (MMD) is a distance on the space of probability measures which has found numerous applications in machine learning and nonparametric testing. This distance is based on the notion of embedding probabilities in a reproducing kernel Hilbert space. In this paper, we present the first known lower bounds for the estimation of MMD based on finite samples. Our lower bounds hold...
متن کاملMinimax Estimation of Quadratic Fourier Functionals
We study estimation of (semi-)inner products between two nonparametric probability distributions, given IID samples from each distribution. These products include relatively well-studied classical L and Sobolev inner products, as well as those induced by translation-invariant reproducing kernels, for which we believe our results are the first. We first propose estimators for these quantities, a...
متن کاملMinimax and Adaptive Inference in Nonparametric Function Estimation
Since Stein’s 1956 seminal paper, shrinkage has played a fundamental role in both parametric and nonparametric inference. This article discusses minimaxity and adaptive minimaxity in nonparametric function estimation. Three interrelated problems, function estimation under global integrated squared error, estimation under pointwise squared error, and nonparametric confidence intervals, are consi...
متن کاملMinimax Estimation of a Bounded Squared Mean
Consider a normal model with unknown mean bounded by a known constant. This paper deals with minimax estimation of the squared mean. We establish an expression for the asymptotic minimax risk. This result is applied in nonparametric estimation of quadratic functionals.
متن کاملBayesian Aspects of Some Nonparametric Problems
We study the Bayesian approach to nonparametric function estimation problems such as nonparametric regression and signal estimation. We consider the asymptotic properties of Bayes procedures for conjugate (=Gaussian) priors. We show that so long as the prior puts nonzero measure on the very large parameter set of interest then the Bayes estimators are not satisfactory. More specifically, we sho...
متن کامل